DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid

نویسندگان

  • Jun Shirakawa
  • Tomoko Okuyama
  • Mayu Kyohara
  • Eiko Yoshida
  • Yu Togashi
  • Kazuki Tajima
  • Shunsuke Yamazaki
  • Mitsuyo Kaji
  • Megumi Koganei
  • Hajime Sasaki
  • Yasuo Terauchi
چکیده

BACKGROUND Diabetes therapy that not only lowers glucose levels but also lengthens life spans is required. We previously demonstrated that DPP-4 inhibition ameliorated β cell apoptosis and adipose tissue inflammation in β cell-specific glucokinase haploinsufficient mice fed a diet containing a combination of sucrose and linoleic acid (SL). METHODS In this study, we investigated the effects of DPP-4 inhibition in obese diabetic db/db mice fed an SL diet or a control diet containing sucrose and oleic acid (SO). We also examined the effects of DPP-4 inhibition in IRS-1-deficient mice fed an SL or SO diet as a model of insulin resistance. RESULTS DPP-4 inhibition efficiently increases the active GLP-1 levels in db/db mice. Unexpectedly, the SL diet, but not the SO diet, markedly increases mortality in the db/db mice. DPP-4 inhibition reduces the early lethality in SL-fed db/db mice. DPP-4 inhibition improves glucose tolerance, β cell function, and adipose tissue inflammation in db/db mice fed either diet. No significant changes in glycemic control or β cell mass were observed in any of the IRS-1-deficient mouse groups. CONCLUSIONS A diet containing a combination of sucrose and linoleic acid causes early lethality in obese diabetic db/db mice, but not in lean and insulin resistant IRS-1 knockout mice. DPP-4 inhibition has protective effects against the diet-induced lethality in db/db mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diet-Induced Adipose Tissue Inflammation and Liver Steatosis Are Prevented by DPP-4 Inhibition in Diabetic Mice

OBJECTIVE Diet composition alters the metabolic states of adipocytes and hepatocytes in diabetes. The effects of dipeptidyl peptidase-4 (DPP-4) inhibition on adipose tissue inflammation and fatty liver have been obscure. We investigated the extrapancreatic effects of DPP-4 inhibition on visceral fat and the liver. RESEARCH DESIGN AND METHODS We investigated diet-induced metabolic changes in β...

متن کامل

Differential fatty acid profile in adipose and non-adipose tissues in obese mice.

Obesity is a metabolic disease characterized by chronic inflammation. Early studies indicated that adipose tissue from obese mice contains more saturated fatty acids and that the saturated fatty acids activate TLR4-mediated inflammatory signaling, which contributes to inflammation in adipose tissue. In this study, we determined fatty acid profile in non-adipose tissues from obese (db/db) mice a...

متن کامل

Dioscorea batatas Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Decreasing Expression of Inflammatory Cytokines

BACKGROUND The objective of the present study was to determine whether Dioscorea batatas (DB) extract reduces visceral fat accumulation and obesity-related biomarkers in mice fed a high-fat diet (HFD) and whether genes associated with adipogenesis and inflammation could be modulated by a diet containing DB extract. MATERIAL AND METHODS Male C57BL/6J mice were divided into 4 groups (n=10 per g...

متن کامل

Anti-diabetic Effect of Fermented Milk Containing Conjugated Linoleic Acid on Type II Diabetes Mellitus

Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of conjugated dienoic derivatives of linoleic acid. CLA has been reported to be able to reduce body fat. In this study, we investigated the antidiabetic effect of fermented milk (FM) containing CLA on type II diabetes db/db mice. Mice were treated with 0.2% low FM, 0.6% high FM, or Glimepiride (GLM) for 6 wk. Our resu...

متن کامل

Inhibition of CCR2 ameliorates insulin resistance and hepatic steatosis in db/db mice.

OBJECTIVE Recently, adipose tissue inflammation induced by macrophage infiltration through MCP-1/C-C chemokine receptor-2 (CCR2) pathway is considered to play a role in the development of visceral obesity and insulin resistance. In the present study, to further examine the role of CCR2 in the development of obesity and type 2 diabetes, we studied the effect of pharmacological inhibition of CCR2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016